Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.765
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732125

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


3T3-L1 Cells , Adipocytes , Adipogenesis , Anti-Obesity Agents , Hypoglycemic Agents , PPAR gamma , Plant Extracts , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , alpha-Glucosidases/metabolism , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Crassulaceae/chemistry , Lipid Metabolism/drug effects , Cell Differentiation/drug effects
2.
Nutrients ; 16(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732509

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


3T3-L1 Cells , Adipocytes , Adipogenesis , Eugenol , Mitosis , Reactive Oxygen Species , Animals , Adipogenesis/drug effects , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Mitosis/drug effects , Eugenol/pharmacology , Eugenol/analogs & derivatives , Reactive Oxygen Species/metabolism , Cell Differentiation/drug effects , PPAR gamma/metabolism , Cell Proliferation/drug effects , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Lipid Metabolism/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Antioxidants/pharmacology
3.
Sci Rep ; 14(1): 9960, 2024 04 30.
Article En | MEDLINE | ID: mdl-38693222

The pathogenesis of aortic dissection (AD), an aortic disease associated with high mortality, involves significant vascular inflammatory infiltration. However, the precise relationship between perivascular adipose tissue (PVAT) and aortic dissection remains incompletely understood. The objective of this study is to investigate the role of PVAT inflammation in the pathogenesis of aortic dissection and identify novel therapeutic targets for this disease. The mouse model of aortic dissection was established in this study through intraperitoneal injection of Ang II and administration of BAPN in drinking water. Additionally, control groups were established at different time points including the 2-week group, 3-week group, and 4-week group. qPCR and immunohistochemistry techniques were employed to detect the expression of inflammatory markers and RUNX1 in PVAT surrounding the thoracic aorta in mice. Additionally, an aortic dissection model was established using RUNX1 knockout mice, and the aforementioned indicators were assessed. The 3T3-L1 cells were induced to differentiate into mature adipocytes in vitro, followed by lentivirus transfection for the knockdown or overexpression of RUNX1. The study aimed to investigate the potential cell-to-cell interactions by co-culturing 3T3-L1 cells with A7r5 or RAW264.7 cells. Subsequently, human aortic PVAT samples were obtained through clinical surgery and the aforementioned indicators were detected. In comparison to the control group, the aortic dissection model group exhibited decreased expression of MMP-2 and NF-κB in PVAT, while TNF-α and RUNX1 expression increased. Suppression of RUNX1 expression resulted in increased MMP-2 and NF-κB expression in PVAT, along with decreased TNF-α expression. Overexpression of RUNX1 upregulated the expression levels of NF-Κb, MMP-2, and TNF-α in adipocytes, whereas knockdown of RUNX1 exerted an opposite effect. Macrophages co-cultured with adipocytes overexpressing RUNX1 exhibited enhanced CD86 expression, while vascular smooth muscle cells co-cultured with these adipocytes showed reduced α-SMA expression. In human samples, there was an increase in both RUNX1 and MMP-2 expression levels, accompanied by a decrease in TNF-α and NF-Κb expression. The presence of aortic dissection is accompanied by evident inflammatory alterations in the PVAT, and this phenomenon appears to be associated with the involvement of RUNX1. It is plausible that the regulation of PVAT's inflammatory changes by RUNX1/NF-κB signaling pathway plays a role in the pathogenesis of aortic dissection.


Adipose Tissue , Aortic Dissection , Core Binding Factor Alpha 2 Subunit , Disease Models, Animal , Inflammation , NF-kappa B , Animals , Humans , Male , Mice , 3T3-L1 Cells , Adipose Tissue/metabolism , Adipose Tissue/pathology , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction
4.
Sci Rep ; 14(1): 9018, 2024 04 19.
Article En | MEDLINE | ID: mdl-38641685

Cyperus rotundus rhizomes have been used in longevity remedies in Thailand for nourishing good health, which led us to investigate the effect on energy homeostasis, especially glucose utilization in myotubes and adipocytes, and on inhibition of lipogenesis in adipocytes. The results showed that an ethyl acetate extract of C. rotundus rhizomes (ECR) containing 1.61%w/w piceatannol, with a half-maximal concentration of 17.76 ± 0.03 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, caused upregulation and cell-membrane translocation of glucose transporters GLUT4 and 1 in L6 myotubes but downregulation and cytoplasmic localization of GLUT4 expression in 3T3-L1 adipocytes and was related to the p-Akt/Akt ratio in both cells, especially at 100 µg/mL. Moreover, ECR (25-100 µg/mL) significantly inhibited lipid accumulation via Adenosine Monophosphate-Activated Protein Kinase (AMPK), Acetyl CoA Carboxylase (ACC), and Glycogen Synthase Kinase (GSK) pathways. Its immunoblot showed increased expression of p-AMPKα/AMPKα and p-ACC/ACC but decreased expression of p-Akt/Akt and p-GSK3ß/GSK3ß in 3T3-L1 adipocytes. Moreover, the decreased expression of the adipogenic effectors, perilipin1 and lipoprotein lipase, in ECR-incubated adipocytes (50 and 100 µg/mL) indicated reduced de novo lipogenesis. Our study elucidated mechanisms of C. rotundus that help attenuate glucose tolerance in skeletal muscle and inhibit lipid droplet accumulation in adipose tissue.


Cyperus , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Adipogenesis , Glucose/metabolism , Adipocytes/metabolism , Muscle Fibers, Skeletal/metabolism , 3T3-L1 Cells
5.
Biomolecules ; 14(4)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38672517

Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.


Adipogenesis , Autophagy-Related Protein 7 , Autophagy , Caspase 1 , Inflammation , Obesity , Adipogenesis/genetics , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Mice , Caspase 1/metabolism , Caspase 1/genetics , Caspase 1/deficiency , Obesity/metabolism , Obesity/pathology , Obesity/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Male , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , 3T3-L1 Cells , Mice, Knockout
6.
Cell Rep ; 43(4): 114093, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38602875

The storage of fat within lipid droplets (LDs) of adipocytes is critical for whole-body health. Acute fatty acid (FA) uptake by differentiating adipocytes leads to the formation of at least two LD classes marked by distinct perilipins (PLINs). How this LD heterogeneity arises is an important yet unresolved cell biological problem. Here, we show that an unconventional integral membrane segment (iMS) targets the adipocyte specific LD surface factor PLIN1 to the endoplasmic reticulum (ER) and facilitates high-affinity binding to the first LD class. The other PLINs remain largely excluded from these LDs until FA influx recruits them to a second LD population. Preventing ER targeting turns PLIN1 into a soluble, cytoplasmic LD protein, reduces its LD affinity, and switches its LD class specificity. Conversely, moving the iMS to PLIN2 leads to ER insertion and formation of a separate LD class. Our results shed light on how differences in organelle targeting and disparities in lipid affinity of LD surface factors contribute to formation of LD heterogeneity.


Adipocytes , Cell Differentiation , Endoplasmic Reticulum , Lipid Droplets , Lipid Droplets/metabolism , Adipocytes/metabolism , Animals , Mice , Endoplasmic Reticulum/metabolism , Perilipins/metabolism , Humans , 3T3-L1 Cells , Fatty Acids/metabolism , Perilipin-1/metabolism , Perilipin-2/metabolism
7.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674060

Mandarin peel, a main by-product from the processing of citrus juice, has been highlighted for its various bioactivities and functional ingredients. Our previous study proved the inhibitory effects of Celluclast extract from mandarin peel (MPCE) on lipid accumulation and differentiation in 3T3-L1 adipocytes. Therefore, the current study aimed to evaluate the anti-obesity effect of MPCE in high-fat diet (HFD)-induced obese mice. The high-performance liquid chromatography (HPLC) analysis exhibited that narirutin and hesperidin are the main active components of MPCE. Our current results showed that MPCE supplementation decreased adiposity by reducing body and organ weights in HFD-induced obese mice. MPCE also reduced triglyceride (TG), alanine transaminase (ALT), aspartate transaminase (AST), and leptin contents in the serum of HFD-fed mice. Moreover, MPCE significantly inhibited hepatic lipid accumulation by regulating the expression levels of proteins associated with lipid metabolism, including sterol regulatory element-binding protein (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). Furthermore, MPCE administration significantly inhibited both adipogenesis and lipogenesis, with modulation of energy metabolism by activating 5' adenosine monophosphate-activated protein kinase (AMPK) and lipolytic enzymes such as hormone-sensitive lipase (HSL) in the white adipose tissue (WAT). Altogether, our findings indicate that MPCE improves HFD-induced obesity and can be used as a curative agent in pharmaceuticals and nutraceuticals to alleviate obesity and related disorders.


Adipogenesis , Citrus , Diet, High-Fat , Disaccharides , Energy Metabolism , Flavanones , Mice, Inbred C57BL , Obesity , Plant Extracts , Animals , Diet, High-Fat/adverse effects , Obesity/metabolism , Obesity/drug therapy , Obesity/etiology , Citrus/chemistry , Mice , Energy Metabolism/drug effects , Plant Extracts/pharmacology , Male , Adipogenesis/drug effects , Lipid Metabolism/drug effects , 3T3-L1 Cells , Anti-Obesity Agents/pharmacology , Liver/metabolism , Liver/drug effects , Lipogenesis/drug effects , Triglycerides/metabolism , Triglycerides/blood
8.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570133

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


3T3-L1 Cells , Adipocytes , Fibronectins , Lipolysis , Liraglutide , Uncoupling Protein 1 , Animals , Fibronectins/metabolism , Fibronectins/genetics , Mice , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Adipocytes/metabolism , Adipocytes/drug effects , Lipolysis/drug effects , Liraglutide/pharmacology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
9.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38648498

Hormonal contraceptives are widely prescribed due to their effectiveness and convenience and have become an integral part of family planning strategies worldwide. In the United States, approximately 65% of reproductive-aged women are estimated to be using contraceptive options, with approximately 33% using one or a combination of hormonal contraceptives. While these methods have undeniably contributed to improved reproductive health, recent studies have raised concerns regarding their potential effect on metabolic health. Despite widespread anecdotal reports, epidemiological research has been mixed as to whether hormonal contraceptives contribute to metabolic health effects. As such, the goals of this study were to assess the adipogenic activity of common hormonal contraceptive chemicals and their mixtures. Five different models of adipogenesis were used to provide a rigorous assessment of metabolism-disrupting effects. Interestingly, every individual contraceptive (both estrogens and progestins) and each mixture promoted significant adipogenesis (eg, triglyceride accumulation and/or preadipocyte proliferation). These effects appeared to be mediated in part through estrogen receptor signaling, particularly for the contraceptive mixtures, as cotreatment with fulvestrant acted to inhibit contraceptive-mediated proadipogenic effects on triglyceride accumulation. In conclusion, this research provides valuable insights into the complex interactions between hormonal contraceptives and adipocyte development. The results suggest that both progestins and estrogens within these contraceptives can influence adipogenesis, and the specific effects may vary based on the receptor disruption profiles. Further research is warranted to establish translation of these findings to in vivo models and to further assess causal mechanisms underlying these effects.


Adipogenesis , Adipogenesis/drug effects , Animals , Female , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Progestins/pharmacology , Humans , 3T3-L1 Cells , Estrogens/pharmacology , Contraceptives, Oral, Hormonal/pharmacology
10.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644407

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Adipose Tissue, White , Benzhydryl Compounds , Glucosides , Protein Serine-Threonine Kinases , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Animals , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , AMP-Activated Protein Kinases/metabolism , Benzhydryl Compounds/pharmacology , Diet, High-Fat , Glucosides/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Obesity/drug therapy , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
11.
Phytomedicine ; 128: 155551, 2024 Jun.
Article En | MEDLINE | ID: mdl-38569293

BACKGROUND: Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE: This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS: Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS: Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS: These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.


Cell Proliferation , Citrates , Forkhead Box Protein O1 , Obesity , Ribosomal Protein S6 Kinases, 90-kDa , Animals , Mice , 3T3-L1 Cells/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Cell Proliferation/drug effects , Citrates/pharmacology , Citrates/therapeutic use , Diet, High-Fat/adverse effects , Forkhead Box Protein O1/antagonists & inhibitors , Forkhead Box Protein O1/metabolism , Mice, Inbred C57BL , Mitosis/drug effects , Obesity/drug therapy , Obesity/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/drug effects
12.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38612868

Natural rare sugars are an alternative category of sweeteners with positive physiologic and metabolic effects both in in vitro and animal models. D-allulose is a D-fructose epimer that combines 70% sucrose sweetness with the advantage of an extremely low energy content. However, there are no data about the effect of D-allulose against adipose dysfunction; thus, it remains to be confirmed whether D-allulose is useful in the prevention and in treatment of adipose tissue alterations. With this aim, we evaluated D-allulose's preventive effects on lipid accumulation in 3T3-L1 murine adipocytes exposed to palmitic acid (PA), a trigger for hypertrophic adipocytes. D-allulose in place of glucose prevented adipocyte hypertrophy and the activation of adipogenic markers C/EBP-ß and PPARγ induced by high PA concentrations. Additionally, D-allulose pretreatment inhibited the NF-κB pathway and endoplasmic reticulum stress caused by PA, through activation of the Nrf2 pathway. Interestingly, these effects were also observed as D-allulose post PA treatment. Although our data need to be confirmed through in vivo models, our findings suggest that incorporating D-allulose as a glucose substitute in the diet might have a protective role in adipocyte function and support a unique mechanism of action in this sugar as a preventive or therapeutic compound against PA lipotoxicity through the modulation of pathways connected to lipid transport and metabolism.


Fructose , Palmitic Acid , Animals , Mice , Palmitic Acid/toxicity , 3T3-L1 Cells , Adipocytes , Hypertrophy , Endoplasmic Reticulum Stress , Glucose
13.
Nutrients ; 16(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38613069

The present study investigated potential bioactive natural products from the EtOH extract of Salix chaenomeloides twigs using column chromatography, leading to the isolation of six compounds (1-6), which were characterized as two proanthocyanidins, procyanidin B2 (1) and procyanidin B1 (2), and four phenolic compounds, 4-hydroxybenzoic acid ß-D-glucosyl ester (3), di-O-methylcrenatin (4), p-coumaric acid glucoside (5), and syringin (6) by the comparison of their NMR spectra with the reported data and high-resolution (HR)-electrospray ionization mass spectroscopy (ESI-MS) analysis. We investigated the potential of six compounds (1-6) to inhibit adipogenesis in 3T3-L1 preadipocytes, which showed that the compounds (1-6) significantly reduced lipid accumulation in 3T3-L1 adipocytes without affecting cell proliferation. Notably, compound 1 demonstrated a remarkable 60% and 90% reduction in lipid levels with 50 and 100 µM treatments, respectively. Oil Red O staining results indicated that compound 1 significantly inhibits the formation of lipid droplets, comparable to the effect of T863, an inhibitor of triglyceride used as a positive control, in adipocytes. Compound 1 had no effect on the regulators PPARγ, C/EBPα, and SREBF1 of adipocyte differentiation in 3T3-L1 preadipocytes, but compound 1 activated the fatty acid oxidation regulator, PPARα, compared to the lipogenic-induced control. It also suppressed fatty acid synthesis by downregulating the expression of fatty acid synthase (FAS). Finally, compound 1 induced the mRNA and protein levels of CPT1A, an initial marker of mitochondrial fatty acid oxidation in 3T3-L1. This finding substantiates the anti-lipogenic and lipolytic effects of procyanidin B2 (1) in 3T3-L1 preadipocytes, emphasizing its pivotal role in modulating obesity-related markers.


Proanthocyanidins , Salix , Mice , Animals , 3T3-L1 Cells , Proanthocyanidins/pharmacology , Fatty Acids , Lipids
14.
Cell Mol Biol Lett ; 29(1): 45, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553665

BACKGROUND: Both glucocorticoid receptor and peroxisome proliferator-activated receptor-γ (PPARγ) play a critical role in adipocyte differentiation. Mifepristone is not only an antagonist of the glucocorticoid receptor but also an agonist of PPARγ. Therefore, the present study investigated the effect of mifepristone on adipocyte differentiation. METHODS: Mouse 3T3-L1 cells were used as a model for adipocyte differentiation. The lipid droplet formation was evaluated with Bodipy493/503 staining and the expression of adipocyte markers [adiponectin and adipocyte fatty acid binding protein-4 (Fabp4)] was evaluated with quantitative PCR and immunoblot analyses for indication of adipocyte differentiation. siRNA and neutralizing antibodies were used to elucidate the molecular mechanism of mifepristone-induced adipocyte differentiation. Luciferase reporter assay was used to examine the effect of mifepristone on the promoter activity of PPAR-response element (PPRE). The DNA microarray analysis was used to characterize the transcriptome of the mifepristone-induced adipocytes. In vivo adipogenic effect of mifepristone was examined in mice. RESULTS: Mifepristone not only enhanced adipocyte differentiation induced by the conventional protocol consisting of insulin, dexamethasone and 3-isobutyl-1-methylxanthine but also induced adipocyte differentiation alone, as evidenced by lipid droplets formation and induction of the expression of adiponectin and Fabp4. These effects were inhibited by an adiponectin-neutralizing antibody and a PPARγ antagonist. Mifepristone activated the promoter activity of PPRE in a manner sensitive to PPARγ antagonist. A principal component analysis (PCA) of DNA microarray data revealed that the mifepristone-induced adipocytes represent some characteristics of the in situ adipocytes in normal adipose tissues to a greater extent than those induced by the conventional protocol. Mifepristone administration induced an increase in the weight of epididymal, perirenal and gluteofemoral adipose tissues. CONCLUSIONS: Mifepristone alone is capable of inducing adipocyte differentiation in 3T3-L1 cells and adipogenesis in vivo. PPARγ plays a critical role in the mifepristone-induced adipocyte differentiation. Mifepristone-induced adipocytes are closer to the in situ adipocytes than those induced by the conventional protocol. The present study proposes a single treatment with mifepristone as a novel protocol to induce more physiologically relevant adipocytes in 3T3-L1 cells than the conventional protocol.


Adiponectin , Mifepristone , Mice , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Mifepristone/pharmacology , Mifepristone/metabolism , PPAR gamma/metabolism , 3T3-L1 Cells , Receptors, Glucocorticoid/metabolism , Cell Differentiation , Adipogenesis/genetics , Adipocytes/metabolism
15.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38474161

Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), a natural compound extracted from AA, has demonstrated potential therapeutic effects in various disease models. However, its effects on diabetes and obesity remain largely unexplored. We investigated the anti-obesity and anti-diabetic properties of TA3 using in vitro and in vivo models. TA3 treatment in NCI-H716 cells stimulated the secretion of glucagon-like peptide 1 (GLP-1) through the activation of phosphorylation of protein kinase A catalytic subunit (PKAc) and 5'-AMP-activated protein kinase (AMPK). In 3T3-L1 adipocytes, TA3 effectively inhibited lipid accumulation by regulating adipogenesis and lipogenesis. In a high-fat diet (HFD)-induced mice model, TA3 administration significantly reduced body weight gain and food intake. Furthermore, TA3 improved glucose tolerance, lipid profiles, and mitigated hepatic steatosis in HFD-fed mice. Histological analysis revealed that TA3 reduced the size of white adipocytes and inhibited adipose tissue generation. Notably, TA3 downregulated the expression of lipogenic factor, including fatty-acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP1c), emphasizing its potential as an anti-obesity agent. These findings revealed that TA3 may be efficiently used as a natural compound for tackling obesity, diabetes, and associated metabolic disorders, providing a novel approach for therapeutic intervention.


Anti-Obesity Agents , Diabetes Mellitus, Type 2 , Saponins , Animals , Mice , Obesity/metabolism , Steroids/pharmacology , Anti-Obesity Agents/pharmacology , Adipogenesis , AMP-Activated Protein Kinases/metabolism , Lipids/pharmacology , 3T3-L1 Cells , Diet, High-Fat , Mice, Inbred C57BL
16.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38474216

Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-ß-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases.


Adipogenesis , Lipid Metabolism , Mice , Animals , Adipogenesis/genetics , Obesity/metabolism , Hypertrophy , Lipids/pharmacology , Oxidative Stress , 3T3-L1 Cells , PPAR gamma/metabolism
17.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38474229

The prevalence of metabolic syndrome is increasing globally due to behavioral and environmental changes. There are many therapeutic agents available for the treatment of chronic metabolic diseases, such as obesity and diabetes, but the data on their efficacy and safety are lacking. Through a pilot study by our group, Zingiber officinale rhizomes used as a spice and functional food were selected as an anti-obesity candidate. In this study, steam-processed ginger extract (GGE) was used and we compared its efficacy at alleviating metabolic syndrome-related symptoms with that of conventional ginger extract (GE). Compared with GE, GGE (25-100 µg/mL) had an increased antioxidant capacity and α-glucosidase inhibitory activity in vitro. GGE was better at suppressing the differentiation of 3T3-L1 adipocytes and lipid accumulation in HepG2 cells and promoting glucose utilization in C2C12 cells than GE. In 16-week high-fat-diet (HFD)-fed mice, GGE (100 and 200 mg/kg) improved biochemical profiles, including lipid status and liver function, to a greater extent than GE (200 mg/kg). The supplementation of HFD-fed mice with GGE (200 mg/kg) resulted in the downregulation of SREBP-1c and FAS gene expression in the liver. Collectively, our results indicate that GGE is a promising therapeutic for the treatment of obesity and metabolic syndrome.


Anti-Obesity Agents , Metabolic Syndrome , Zingiber officinale , Mice , Animals , Steam , Metabolic Syndrome/drug therapy , Pilot Projects , Adipose Tissue/metabolism , Obesity/metabolism , Plant Extracts/pharmacology , Diet, High-Fat , Anti-Obesity Agents/pharmacology , Lipids/pharmacology , Mice, Inbred C57BL , 3T3-L1 Cells , Adipogenesis
18.
Epigenomics ; 16(6): 359-374, 2024 Mar.
Article En | MEDLINE | ID: mdl-38440863

Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.


In this study, a protein called SMYD1 was examined in the adipose tissue of mice to understand its role in the development of different types of fat cells. The authors used mice fed a high-fat diet or mice exposed to a cold environment. The experiments were also performed on cultured cells that were stimulated to form specific types of fat cells (white adipocytes, which store energy; or beige adipocytes, which are responsible for releasing energy in the form of heat). The study found that SMYD1 increased in white adipose tissue particularly in response to cold exposure and high-fat diet, suggesting involvement in body temperature regulation. SMYD1 was higher in beige adipocytes than in white fat cells, and when SMYD1 was reduced, there was a decrease in certain factors related to energy control. Overall, these results suggest that SMYD1 plays a novel role in energy regulation in adipose tissues.


Adipose Tissue , Thermogenesis , Animals , Mice , 3T3-L1 Cells , Histone Methyltransferases , Mice, Inbred C57BL , Thermogenesis/genetics
19.
Mol Biol Rep ; 51(1): 445, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520487

BACKGROUND: Inflammation is an important factor contributing to obesity-induced metabolic disorders. Different investigations confirm that local inflammation in adipose issues is the primary reason for such disorder, resulting in low-grade systemic inflammation. Anti-inflammatory, antioxidant, and epigenetic modification are among the varied properties of Quercetin (QCT) as a natural flavonoid. OBJECTIVE: The precise molecular mechanism followed by QCT to alleviate inflammation has been unclear. This study explores whether the anti-inflammatory effects of QCT in 3T3-L1 differentiated adipocytes may rely on SIRT-1. METHODS: The authors isolated 3T3-L1 pre-adipocyte cells and exposed them to varying concentrations of QCT, lipopolysaccharide (LPS), and a selective inhibitor of silent mating type information regulation 2 homolog 1 (SIRT-1) called EX-527. After determining the optimal dosages of QCT, LPS, and EX-527, they assessed the mRNA expression levels of IL-18, IL-1, IL-6, TNF-α, SIRT-1, and adiponectin using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: The study showed considerable cytotoxic effects of LPS (200 ng/mL) + QCT (100 µM) + EX-527 (10 µM) on 3T3-L1 differentiated adipocytes after 48 h of incubation. QCT significantly upregulated the expression levels of adiponectin and SIRT-1 (p < 0.0001). However, introducing SIRT-1 inhibitor (p < 0.0001) reversed the impact of QCT on adiponectin expression. Additionally, QCT reduced SIRT-1-dependent pro-inflammatory cytokines in 3T3-L1 differentiated adipocytes (p < 0.0001). CONCLUSION: This study revealed that QCT treatment reduced crucial pro-inflammatory cytokines levels and increased adiponectin levels following LPS treatment. This finding implies that SIRT-1 may be a crucial factor for the anti-inflammatory activity of QCT.


Adiponectin , Lipopolysaccharides , Quercetin , Sirtuin 1 , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/adverse effects , Quercetin/pharmacology , Sirtuin 1/metabolism
20.
Int J Biol Macromol ; 265(Pt 1): 130816, 2024 Apr.
Article En | MEDLINE | ID: mdl-38503371

Acetylation modification has a wide range of functional roles in almost all physiological processes, such as transcription and energy metabolism. Crotonylation modification is mainly involved in RNA processing, nucleic acid metabolism, chromosome assembly and gene expression, and it's found that there is a competitive relationship between crotonylation modification and acetylation modification. Previous study found that dihydrolipoyl dehydrogenase (DLD) was highly expressed in brown adipose tissue (BAT) of white adipose tissue browning model mice, suggesting that DLD is closely related to white fat browning. This study was performed by quantitative real-time PCR (qPCR), Western blotting (WB), Enzyme-linked immunosorbent assay (ELISA), Immunofluorescence staining, JC-1 staining, Mito-Tracker Red CMXRos staining, Oil red O staining, Bodipy staining, HE staining, and Blood lipid quadruple test. The assay revealed that DLD promotes browning of white adipose tissue in mice. Cellularly, DLD was found to promote white adipocytes browning by activating mitochondrial function through the RAS/ERK pathway. Further studies revealed that the crotonylation modification and acetylation modification of DLD had mutual inhibitory effects. Meanwhile, DLD crotonylation promoted white adipocytes browning, while DLD acetylation did the opposite. Finally, protein interaction analysis and Co-immunoprecipitation (Co-IP) assays identified Sirtuin3 (SIRT3) as a decrotonylation and deacetylation modification enzyme of regulates DLD. In conclusion, DLD promotes browning of white adipocytes by activating mitochondrial function through crotonylation modification and the RAS/ERK pathway, providing a theoretical basis for the control and treatment of obesity, which is of great significance for the treatment of obesity and obesity-related diseases in the future.


Adipocytes, White , Dihydrolipoamide Dehydrogenase , Animals , Mice , Adipocytes, White/metabolism , Dihydrolipoamide Dehydrogenase/metabolism , MAP Kinase Signaling System , Adipose Tissue, White/metabolism , Obesity/metabolism , 3T3-L1 Cells
...